Skip to Content

Quantum Mechanics 1

Given a wave function ψ=Asin(2x) \psi = A \sin(2x) for x[π,π] x \in [-\pi, \pi] and ψ(x)=0 \psi (x) = 0 otherwise, find the value of AA such that the wave function is normalized.

Given a ket state ψ=3+2i|\psi\rangle = 3|\uparrow\rangle + 2i|\downarrow\rangle, normalize this state.

Normalize the quantum harmonic oscillator wave function given by ψ=20+5i1+4i4|\psi\rangle = 2|0\rangle + \sqrt{5}i|1\rangle + \frac{4}{i}|4\rangle.

Normalize the wave function ψ(x)=sin(2πx)\psi(x) = \sin(2 \pi x) for a particle in a box of length 1.

Normalize the wave function ψ(x)=x(Lx)\psi(x) = x(L-x) for a particle in a box of length LL.

Find the transmission coefficient using the WKB approximation for the case when the energy is less than the potential.

Integrate over the momentum p(x)p(x) and calculate e2γe^{-2\gamma}, where γ=1p(x)dx\gamma = \frac{1}{\hbar} \int p(x) \, dx.

Sketch out what you expect the wave functions to look like from the given potential profile.