Skip to Content

Linear Algebra

Given the vectors v1=(13,23,23)v_1 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) and v2=(23,13,23)v_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), determine if they form an orthonormal set in R3\mathbb{R}^3.

Multiply the scalar 3 with the matrix [7510380]\begin{bmatrix} 7 & 5 & -10 \\ 3 & 8 & 0 \end{bmatrix}.

Determine whether the following homogeneous system has non-trivial solutions by inspection: 3 equations with 4 unknowns (X1 through X4). Since there are more unknowns than equations, it is guaranteed that this homogeneous linear system will have infinitely many solutions.

Solve the system of equations: 5x+4y=05x + 4y = 0 and 2x2y=02x - 2y = 0, using elimination by addition to find the trivial solution.

Let V be a vector space. Verify whether a subset S, which is made of vectors of the form (x, 0, -x), is a subspace of V by checking the properties of closure.

What is the transpose of matrix A?

What is B transpose going to be equal to?

Given two vectors, v=2i5j\mathbf{v} = 2\mathbf{i} - 5\mathbf{j} and w=3i+7j\mathbf{w} = -3\mathbf{i} + 7\mathbf{j}, perform the following operations:

(A) v+w\mathbf{v} + \mathbf{w}

(B) vw\mathbf{v} - \mathbf{w}

(C) 2v+3w2\mathbf{v} + 3\mathbf{w}

(D) 4v5w4\mathbf{v} - 5\mathbf{w}

Given two vectors X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix} and Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix}, compute X+YX + Y.

Subtract the vector Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix} from X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}. Compute XYX - Y.

Calculate the linear combination 3X+2Y3X + 2Y for the vectors X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix} and Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.

Given vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}, compute A+BA + B.

For vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}, compute BAB - A.

Calculate the expression B+3AB + 3A for vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}.