Skip to Content

Linear Algebra: Vector Operations and Linear Combinations

Given vectors V1=[125]V_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}, V2=[256]V_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}, and B=[743]B = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}, determine if there exist scalars x1x_1 and x2x_2 such that x1V1+x2V2=Bx_1 V_1 + x_2 V_2 = B.

Describe a plane in R3\mathbb{R}^3 given by the equation x3y+4z=0x - 3y + 4z = 0 in parametric vector form.

Given two vectors, v=2i5j\mathbf{v} = 2\mathbf{i} - 5\mathbf{j} and w=3i+7j\mathbf{w} = -3\mathbf{i} + 7\mathbf{j}, perform the following operations:

(A) v+w\mathbf{v} + \mathbf{w}

(B) vw\mathbf{v} - \mathbf{w}

(C) 2v+3w2\mathbf{v} + 3\mathbf{w}

(D) 4v5w4\mathbf{v} - 5\mathbf{w}

Given two vectors X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix} and Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix}, compute X+YX + Y.

Subtract the vector Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix} from X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}. Compute XYX - Y.

Calculate the linear combination 3X+2Y3X + 2Y for the vectors X=[12]X = \begin{bmatrix} 1 \\ 2 \end{bmatrix} and Y=[46]Y = \begin{bmatrix} -4 \\ 6 \end{bmatrix}.

Given vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}, compute A+BA + B.

For vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}, compute BAB - A.

Calculate the expression B+3AB + 3A for vectors A=[124]A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} and B=[027]B = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}.