Skip to Content

Linear Algebra: Subspaces Basis and Dimension

Determine if the given set of four matrices, with specific ones and zeros, span R2x2R^{2x2} and form a basis.

[1100]\begin{bmatrix}1 & 1 \\0 & 0\end{bmatrix} [0011]\begin{bmatrix}0 & 0 \\1 & 1\end{bmatrix} [1001]\begin{bmatrix}1 & 0 \\0 & 1\end{bmatrix} [0111]\begin{bmatrix}0 & 1 \\1 & 1\end{bmatrix}

Check comprehension related to vector spaces, subspaces, span, linear independence, basis, and dimension.

Determine the column space of the given matrix AA.

Consider a matrix AA and determine the column space, which is the set of all vectors b\mathbf{b} such that there exists a vector x\mathbf{x} where Ax=bA\mathbf{x} = \mathbf{b}.

Given a set of four vectors in R2\mathbb{R}^2, put them as columns of a matrix, row reduce, and identify the number of pivots to determine the dimension of the span.

Given the set U consisting of vectors from R3\mathbb{R}^3 defined by the equations:

a=2rs,b=3r,c=r+sa = 2r - s, \quad b = 3r, \quad c = r + s where r,sr, s are real numbers, determine whether U is a subspace of R3\mathbb{R}^3.

Let W={[a+2b,ab,3b]a,bR}W = \{ [a + 2b, a - b, 3b] \mid a, b \in \mathbb{R} \}. Determine if WW is a subspace of R3\mathbb{R}^3.