Skip to Content

Derivative of Inverse Tan

Let f(x)=tan(x)f(x) = \tan{(x)} on the interval π2\frac{-\pi}{2} < xx < π2\frac{\pi}{2}

What is ddx(arctan(x))\frac{d}{dx}(\arctan{(x)}) ?

Posted by Ashley Oliver 8 months ago

Related Problems

Determine the derivative of the following inverse trig function

f(x)=arctan(x)f(x) = \arctan{(\sqrt{x})}

Determine the derivative of the inverse trigonometric function

f(x)=sec1(5x)f(x) = \sec^{-1}{(5x)}

Show that for y=cos1(x)y = \cos^{-1}(x) the first derivative, dydx=1x2+1\frac{dy}{dx} = \frac{1}{x^2 + 1}

For the following function, find the first derivative

θ=tan1(2r)πr\theta = \frac{\tan^{-1}(2r)}{\pi{r}}