Skip to Content

Failure of l'Hospital's Rule

Home | Calculus 1 | Indeterminate Forms and l'Hospital's Rule | Failure of l'Hospital's Rule

Explain why the following limit can not be found using l'Hospital's Rule then find the limit using a different method.

limxx+cos(x)x\lim_{x\rightarrow \infty} \frac{x + \cos{(x)}}{x}

Posted by Adam Jensen a year ago

Related Problems

Compute the following limit

limx0sin(5x)x\lim_{x\rightarrow 0} \frac{\sin{(5x)}}{x}

Use l'Hospital's Rule to find the limit

limx0x26x+2x+1\lim_{x\rightarrow 0} \frac{x^2 - 6x + 2}{x + 1}

Evaluate the following limit

limxln(1+e3x)2x+5\lim_{x\rightarrow \infty} \frac{\ln{(1 + e^{3x})}}{2x + 5}

Evalute limx0x+cos(2x)exx\lim_{x\rightarrow 0} \frac{x + \cos{(2x)} - e^x}{x}